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Abstract—Emotion Recognition (ER) is the process of an-
alyzing and identifying human emotions from sensing data.
Currently, the field heavily relies on facial expression recognition
(FER) because visual channel conveys rich emotional cues.
However, facial expressions are often used as social tools rather
than manifestations of genuine inner emotions. To understand
and bridge this gap between FER and ER, we introduce eye
behaviors as an important emotional cue and construct an
Eye-behavior-aided Multimodal Emotion Recognition (EMER)
dataset. To collect data with genuine emotions, spontaneous
emotion induction paradigm is exploited with stimulus material,
during which non-invasive eye behavior data, like eye movement
sequences and eye fixation maps, is captured together with
facial expression videos. To better illustrate the gap between
ER and FER, multi-view emotion labels for mutimodal ER
and FER are separately annotated. Furthermore, based on the
new dataset, we design a simple yet effective Eye-behavior-aided
MER Transformer (EMERT) that enhances ER by bridging
the emotion gap. EMERT leverages modality-adversarial feature
decoupling and a multitask Transformer to model eye behaviors
as a strong complement to facial expressions. In the experiment,
we introduce seven multimodal benchmark protocols for a
variety of comprehensive evaluations of the EMER dataset. The
results show that the EMERT outperforms other state-of-the-art
multimodal methods by a great margin, revealing the importance
of modeling eye behaviors for robust ER. To sum up, we provide
a comprehensive analysis of the importance of eye behaviors in
ER, advancing the study on addressing the gap between FER
and ER for more robust ER performance. Our EMER dataset
and the trained EMERT models will be publicly available at
https://anonymous.4open.science/r/EMER-database.

Index Terms—Multimodal emotion dataset, Emotion recogni-
tion, Facial expression recognition, Eye behaviors, Emotion gap.

I. INTRODUCTION

MOTION recognition (ER) aims to understand and iden-

tify human psycho-emotional states across diverse be-
haviors and contexts, playing a key role in human-computer
interaction and cognitive science [1]. It also finds broad
applications in multimedia scenarios and applications, such
as video surveillance, intelligent education systems, affective
healthcare, and personalized advertising [2]. Recent advances
in Facial Expression Recognition (FER) have driven progress
in ER [3]-[5], as facial expressions are widely regarded as
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Fig. 1. An example from our EMER dataset. EMER comprises facial
expression videos, eye movement sequences, and eye fixation maps, along
with multi-view emotion annotations, including FER labels and ER labels,
providing more comprehensive emotion analysis.

strong indicators of emotional states. Most FER-based ER
approaches rely on visual cues from images or videos [6],
[7], supported by both static and dynamic FER datasets.
Static datasets like SFEW [8] and JAFFE [9] consist of still
facial images with emotion labels, while dynamic datasets
such as AFEW 7.0 [10] and DFEW [11] provide temporally
evolving facial expressions from videos. Using these datasets,
many FER-based ER methods have been developed to classify
Ekman’s six basic emotions (i.e., happiness, sadness, fear,
surprise, disgust, and anger) [12]. However, relying solely on
visual facial expressions may be insufficient, as such cues can
be consciously masked or suppressed, leading to unreliable
recognition in certain contexts [6].

In the area of ER, existing literature has shown that relying
solely on visual facial expression signals is inadequate due to
the subjective and camouflaged nature of facial expressions
[1], [13]. This limitation results in a significant ‘emotion gap’
when applied to various scenarios. Here, the emotion gap
refers to the disparity between facial expressions and genuine
emotions of individuals [14]. As an intuitive example, when
a person is concealing his or her sad feelings, he or she may
put a big smile on the face as a natural response. In such
scenarios, conventional FER methods would be misled by the
smile expression and could not robustly recognize the true
sadness emotion. To bridge this emotion gap between FER and
ER, recent studies have explored the integration of additional
physiological modalities, such as electroencephalogram (EEG)
signals and eye behavior signals [15]-[17], which are more
intuitively reflective of the true state of human emotions. These
efforts have led to more robust and comprehensive multimodal
ER (MER) systems. To achieve this, some physiological sig-
nals enhanced MER datasets have been developed, as shown in
Table I. For example, the DEAP [16] collects facial expression
videos and EEG signals from 32 participants, and MAHNOB-
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TABLE I
SUMMARY OF EXISTING POPULAR MULTIMODAL EMOTION DATASETS AND OUR PROPOSED EMER DATASET.
Dataset #Part. | Data Quality | Non-invasive Sensor | Visual Facial Images | Eye Movement Data | Eye Fixation Maps | Both ER & FER Anno. | Emotion Gap Analysis

CMU-MOSI [18] N/A Noisy v v
CMU-MOSEI [19] N/A Noisy v v
IEMOCAP [20] 10 Clean v v
eNTERFACE’05 [21] 42 Clean v v
DECAF [22] 30 Clean v
DEAP [23] 32 Clean v

SEED-IV [17] 15 Clean v

SEED-V [24] 20 Clean v

MAHNOB-HCI [15] 27 Clean v v

Our EMER 121 Clean v v v v v v

HCI dataset [15] contains eye movement data and facial
images from 27 participants. Although these MER datasets
help mitigate the gap between expression and emotion, most
they rely on specialized and expensive sensing devices to
capture high-quality EEG or eye signals. This makes these
existing datasets collected on a small scale, with a relatively
homogenous set of participants and labeling. This limits
the scalability and utility of such systems for real-world
applications.

To address the limitations, in this paper, we construct an
Eye-behavior-aided Multimodal Emotion Recognition dataset
(EMER) featuring larger scale, diverse participants, and multi-
view annotations. EMER captures rich emotional cues by
integrating facial expression videos, eye movement sequences,
and eye fixation maps, along with multi-view emotion anno-
tations, including FER labels and ER labels. The inclusion
of such eye behaviors is inspired by Hess er al. [25] and
other psychological studies [26], which demonstrate that eye
movements and fixation patterns serve as natural, intuitive
responses to emotional states.

To construct the EMER dataset, we adopt a stimulus-
induced spontaneous emotion elicitation protocol. Four emo-
tion experts first curated 28 emotional video clips, which
were then shown to 121 participants to induce short-term,
spontaneous emotional responses. This process yielded 1,303
high-quality multimodal sequences, simultaneously capturing
eye behaviors and facial expressions using a non-invasive
Tobii Pro Fusion eye tracker! and a high-definition camera.
Each sample in EMER is annotated with both emotion and
facial expression labels using a combined labeling strategy to
ensure accuracy and depth, enabling a detailed analysis of the
emotion gap between FER and ER. To our knowledge, EMER
is the first eye-behavior-aided multimodal dataset specifically
designed for both ER and FER, offering unique insights into
this gap. Fig.1 illustrates the multi-view annotations in EMER,
and Table I compares EMER with existing MER datasets.

In addition, based on the new EMER dataset, we design
a simple yet effective Eye-behavior-aided MER Transformer
(EMERT) method. Rather than the existing multimodal meth-
ods [27], [28], our EMERT applies adversarial learning and
multi-task Transformer to help explicitly extract modality-
complementary affective features, so that the gap between
facial expression information and eye behavior information
can be better modeled and bridged for more effective ER,
providing a strong benchmark for future research.

To sum up, we summarize the key contributions as follows:

o We create EMER, a novel eye-behavior-aided multimodal
ER dataset containing 1,303 spontaneous samples from

Uhttps://www.tobii.com/products/eye-trackers/screen-based/
tobii-pro-fusion

121 participants. EMER includes eye movement se-
quences, eye fixation maps, and facial expression videos,
with both FER and ER labels to enable comprehensive
emotion gap analysis. To our knowledge, EMER is the
first dataset of its kind, offering a new direction for
emotion gap research in ER.

o The EMER dataset introduces comprehensive annotation
strategies for achieving multi-view emotion labels. We
cover 3-class coarse ER and FER labels (namely positive,
negative and neutral), 7-class fine ER and FER labels
(namely happiness, sadness, fear, surprise, disgust, anger,
and neutral), 2-dimensional continuous emotion ratings
(valence and arousal), as well as facial expression inten-
sity (0-3). All of the annotation information contributes
to the explicit investigation of the emotion gap, aiming
to delve into the details of how to improve ER with
multimodal data.

o We devise a simple yet effective benchmarking method,
EMERT, to achieve robust ER performance by explicitly
and effectively bridging the emotion gap between facial
expressions and eye behaviors. The EMERT has shown
significant benefits in ER.

o We carried out a comprehensive evaluation of various
multimodal methods on our EMER dataset, with seven
benchmarking protocols. By addressing the gap between
FER and ER, we can further demonstrate that both two
tasks benefits from the emotional cues from multimodal
data, highlighting the importance of explicitly analyzing
the emotion gap for future research.

II. RELATED WORK
A. Facial Expression-based Multimodal Emotion Datasets

Currently, there are two main types of facial expression-
based multimodal emotion datasets, namely in-the-wild col-
lected emotion datasets [18] and lab-induced spontaneous
emotion datasets [15], [23]. In-the-wild collected emotion
datasets mainly contain facial expression data, audio, and text
gathered from the web or social medias. These datasets often
contain various sources of noise and can be challenging to
annotate accurately, ultimately compromising their utility for
complex applications in emotion recognition. For example,
CMU-MOSI [18] consists of 2199 clips with video, audio,
and text data, collected from YouTube and annotated with
emotional scores in the range [-3,3]. Lab-induced spontaneous
emotion datasets contain facial expressions and other phys-
iological signals, such as EEG, Electrocardiography(ECG),
Galvanic Skin Response(GSR), and so on. DEAP [23] contains
1280 multimodal samples from 32 participants, with annota-
tions for valence, arousal, dominance, likability, and familiar-
ity, along with facial videos and physiological signals (EEG,
GSR, ECG). MAHNOB-HCI [15] includes 565 samples from
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Fig. 2. The collection framework for our EMER dataset. The EMER dataset is multimodal, participant-rich, and multi-view annotation emotion dateset,
providing a novel research direction in understanding the emotion gap between ER and FER.

27 participants, each with eye movements, EEG, physiological
signals, video, audio, and labels for 9-class emotion, valence,
arousal, dominance, and predictability. Despite progress, the
former suffers from web-induced noise, while the latter is
constrained by limited scale and participant diversity.

B. Facial Expression Recognition

The FER task aims to understand individual emotions
from his/her visual facial expressions. Currently methods are
divided into two main categories, namely static FER methods
and dynamic FER methods [5], [29]. Static FER methods
focus on recognizing facial expressions from static face im-
ages and have achieved significant achievements. Wang et al.
[29] recognized facial expressions from low-quality images
by introducing an effective self-healing network (SCN). By
Contrary, dynamic FER methods explores spatio-temporal
information from video sequences, obtaining more robust FER
performance. Ma et al. [30] proposed the spatial-temporal
Transformer to capture discriminative emotion features within
each frame and model contextual relationships among frames.
Liu et al. [5] proposed Expression snippet Transformer (EST)
to decompose videos into expression snippets to enhance intra-
and inter-snippet visual modeling capabilities, respectively.
Although progress has been made in FER, these methods can
only recognise information from facial expressions, which can
be easily camouflaged in some scenes, and this can lead to
recognition results that deviate from the true emotion.

C. Multimodal Emotion Recognition

Multimodal ER aims to predict human emotions from multi-
ple modalities, such as video, audio, and physiological signals.
Most existing methods mainly are divided into two cate-
gories, i.e, representation learning-based methods [31], [32]
and multimodal fusion-based methods [33]. Representation
learning-based methods focus on learning specific modality
representations by considering the difference and consistency
of different modalities, thus improving multimodal emotion
recognition. For example, VAANET [32], which integrated
spatial, channel-wise, and temporal attentions for audio-video
emotion recognition. Multimodal fusion-based methods at-
tempt to learn the interactive information between different
modalities by designing complex fusion mechanisms. For
example, MulT [34] used a set of Transformer encoders to
capture both unimodal and cross-modal interactions. Kernel-
based Extreme Learning Machine (ELM) [35] recognized
video emotions by combining video content and EEG signals.
Despite the progress, most methods did not consider the raw
noises existing in the specific modality features, leading to
sub-optimal results.

III. PROPOSED EMER DATASET

To gain deeper insights into the gap between FER and
ER, we construct the Eye-behavior-aided Multimodal Emotion
Recognition (EMER) dataset. As illustrated in Fig. 2, the
construction pipeline comprises four stages: stimulus selection,
data recording, data pre-processing, and multi-view annota-
tion. Through this pipeline, we collects 1,303 spontaneous
emotional sequences collected from 121 participants, cov-
ering 3 modalities: facial expression videos, eye movement
sequences, and eye fixation maps. In addition, we provide
both ER and FER labels using distinct annotation strategies,
enabling a comprehensive analysis of the gap between FER
and ER.

A. Stimulus Material Selection and Participants

Following the protocols of MAHNOB-HCI [15] and SEED
[20], we adopt a stimulus material-induced paradigm to elicit
spontaneous emotions. We first collect 115 candidate videos
across seven basic emotion categories from public datasets
and platforms such as BiliBili and YouTube. Four emotion
experts then select the top 4 most emotionally evocative
clips per category, yielding 28 final stimuli (1-2 minutes
each). Some examples are shown in Fig.3., with details in the
supplementary material (Sec.I). We recruit 121 participants (76
males, 45 females; aged 18—40) from diverse backgrounds. In a
controlled lab environment, each participant views the selected
stimuli to evoke short-term, spontaneous emotional responses.
All participants provided informed consent in accordance with
GDPR?, with the consent form included in the supplementary
material.

Anger

Sadness
Surprise

Neutral

Zhttps://gdpr-info.eu/
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B. Data Recording

Using the selected emotion-stimulus videos, each participant
is asked to watch different categories of stimulus videos in
sequence, and his eye movement sequences, emotion-related
eye fixation maps, and facial expression videos are recorded by
a Tobbi Pro Fusion eye-tracking device and a high-definition
camera, simultaneously. After viewing the stimulus videos,
each participant completes an emotional self-assessment ques-
tionnaire for each stimulus video. Ultimately, we collected
1,623 original multimodal data samples from the 121 partici-
pants. More details can be seen in our supplementary material
(Sec.Il).

C. Data Pre-processing

To maintain the integrity and synchronization of the col-
lected multimodal data, we meticulously align, trim, and
filter the original data, obtaining a total of 1,303 high-quality
multimodal emotional data samples processed for our EMER.

1) Facial expression pre-processing: Due to various
emotion-irrelevant visual noise (e.g., illumination, head poses,
etc.) in raw facial data, we carry out a 2-step pre-processing. In
the first step, we use illumination normalization [36] to remove
lighting variations across different frames of a video. Then,
we employed a state-of-the-art deep learning model, MTCNN
[37], to extract facial landmarks and we then performed face
alignment according to the landmarks to ensure consistency
across all video frames.

2) Eye behaviors pre-processing: To align unsynchronised
eye behavior signals, we employ a 3-step process to perform
blink correction, sweep correction, and pupil correction® and
align asynchronous eye movement sequences and eye fixa-
tion maps. Regarding blink correction, we first identify eye
movement sequences with blink durations outside the range
of 75 ms and 425 ms as invalid blinks [6], and then use linear
interpolation to correct the invalid blinks for blink correction.
In sweep correction, linear interpolation is also used to correct
the eye sweep data. Lastly, following [6], we use the difference
between the pupil diameters corresponding to the current and
the previous timestamp for pupil correction in eye movement
sequences. It is worth mentioning that, to make the eye fixation
maps related to emotions, we remove invalid eye fixations
according to invalid eye movements.

D. Multi-view Annotation

As introduced earlier, we provide multi-view emotion an-
notation with both ER and FER to help analyze the gap
between emotions and facial expressions. To further clarify,
the ER labels are based on participant- and organizer-inducing
emotion annotations, while FER labels are assigned by experts
through analysis of recorded facial videos. Here, we will
explain label formats and annotation methods in detail.

1) Label Formats.: Each ER label contains three key as-
pects: (1) 3-class coarse ER labels, i.e., positive, negative, and
neutral; (2) 7-class fine ER labels, i.e., happiness, sadness, fear,
disgust, surprise, anger, and neutral; (3) valence and arousal

3Pupil correction: Pupil data alone may contain more noise, while pupil
fluctuation is more capable of expressing emotion [6], pupil correction is
performed to replace pupil data with pupil fluctuation.

ratings in the range [-1,1], where a higher valence score
signifies a greater level of happiness, while a higher arousal
score indicates a greater degree of excitement. Meanwhile, our
EMER also offers four FER annotations (see Fig.1), which
consist of 3-class coarse FER labels, 7-class fine FER labels,
valence, and arousal ratings within the [-1, 1] range, and facial
expression intensity within the [0,3] range. Although ER and
FER labels are obtained separately, it is important to note that
ER and FER labels come from the shared set of emotional
categories, such as happiness, sadness, fear, surprise, disgust,
anger, and neutral within 7-class fine labels, as well as positive,
negative, and neutral within 3-class coarse labels.

In the rest of this paper, we use j to index each data sample,
and we utilize e; and f; to represent the corresponding ER
label and FER label, respectively.

2) Annotation Method: To achieve multi-view emotion
annotation, we introduce two different annotation strategies to
provide ER and FER labels, respectively, for comprehensive
emotion analysis.

3-class *Positive * Negative «Neutral
7-class * Hape Sad * Ang * Sur *Dis ¢ Fea * Neu
Valence ﬁ'ﬁ'i&'ﬁ'ﬁ
[Negative] — 0 1, [Positive]
Arousal ﬂ.&_%.@.
[Calm] A 0 1 [Exciting]

Fig. 4. The SAM self-assessment for the ER annotation.

ER annotation. Following the annotation methods in [15],
[20], we annotate ER labels e;. Using participant self-
assessments via the Self-Assessment Manikin (SAM) [23], as
shown in Fig.4. For each collected data sample, participants
use the SAM to rate their emotional states, ensuring that the
ER labels reflect both individual experiences and stimulus
effects—providing rich, human-centered annotations for mul-
timodal emotion data.

Facial expression video

EM algorithm

Reliability ¢;

annotate

Model annotation m], Final FER annotation fj

Model Label Reliability
Auto-annotation Assessment

Fig. 5. The ALA pipeline for high-reliability FER annotation, including model
auto-annotation, expert annotation, and annotation reliability assessment.

FER annotation. Manual FER annotation is often labor-
intensive, time-consuming, and prone to subjectivity [19], [23].
To mitigate this issue, we adopt an Active Learning-based
Annotation method (ALA) that combines deep model auto-
annotation with manual expert annotation. As illustrated in
Fig.5, ALA involves model auto-annotation, expert annotation,
and label reliability assessment, resulting in efficient and high-
quality FER labels.

Model auto-annotation represents the process of using ma-
chines to annotate facial videos. We employ EmotiEffNet

Expert annotation pj

Expert Annotation
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Fig. 6. The general framework for our EMERT method. The EMERT achieves robust ER performance by explicitly and effectively bridging the emotion gap

between facial expressions and eye behaviors.

[38], a pre-trained deep neural network specialized in FER,
to automatically annotate each collected data, resulting in the
model-generated FER labels denoted m;. This significantly
expedites the annotation process, leading to substantial time
and resource savings.

After model auto-annotation, there would be inherent pre-
diction biases of machine models, and we enhance the
machine-generated labels by incorporating expert annotations.
Specifically, we first use ER labels to identify and filter
inconsistent model-generated FER labels, and the remaining
FER labels that are consistent with ER labels are directly
stored as annotated FER labels. Due to the emotion gap,
there could be many inconsistent labels. For these inconsistent
labels, we enlist the expertise of four emotion specialists for
re-annotation, ultimately yielding the ER label set termed as
T; = {m;j,p;}, where p; represents expert labels and m;
represents model-generated labels consistent with ER labels.

Using the FER label set T}, we then employ the EM
algorithm [39] to assess annotation reliability, enhancing the
quality and reliability of FER labels. The EM algorithm
comprises two key optimization steps: the E-step and the
M-step. The E-step calculates the posterior probability for
potential correct annotations, while the M-step optimizes the
log-likelihood of each label by estimating each label reliability
a; within Tj. By iteratively cycling through E-step and M-
step until convergence, we ultimately obtain high-quality FER
labels f; through a weighted voting process, which can be

5
formulated as: f; = =
fj 1; E?=1 Qi

E. Metadata in EMER

Following the construction process, EMER contains a col-
lection of 1,303 videos, totaling 390,900 frames. In EMER,
we provide three distinct emotional signal subsets, namely the
facial expression subset, the eye movement subset, and the
emotion-related eye fixation subset, each of which is carefully
designed to capture different aspects of emotions. Examples of
the metadata in EMER are presented in Fig. 1, with additional
samples provided in our supplementary material (Sec.1Il).

The facial expression subset comprises 1,303 videos and
390,900 frames. Each video has a duration of 1 to 2 minutes.
The eye movement subset contains 1.91 million timestamp
samples, offering a more comprehensive and richer set of
information, such as time stamps, gaze point coordinates, gaze
direction, pupil diameter, eye position, gaze time, and eye
movement event type (sweep and gaze). The eye fixation
subset is a massive collection of 7.50GB in size that contains
390,900 frames, each depicting a heat map of the video

. t;-, where t} e T;.

content, location, and trajectory of the participant’s attention
when emotional events occurred.

Moreover, each emotional data in EMER possesses dual
labels for FER and ER, respectively, including 3-class FER
and ER labels, 7-class FER and ER labels, 2-dimensional
continuous emotion ratings, and facial expression intensity.
Fig.7 reports the distributions of the rich ER and FER labels
in our EMER. We also provide all manual and automatic
annotations for each data in EMER.

In summary, EMER offers larger scale (1,303 samples from
121 participants), richer multi-view annotations (ER/FER,
valence/arousal, and expression intensity), and non-invasive
acquisition of synchronized facial and eye behaviors, making
it a valuable benchmark for advancing research on FER and
ER.

IV. PROPOSED EMERT METHOD

Leveraging the EMER dataset, we design the Eye-behavior-
aided MER Transformer (EMERT), incorporates Modality-
Adversarial Feature Decoupling (MAFD) and an Emotion-
sensitive Multi-task Transformer (EMT) to learn modality-
complementary affective features, effectively bridging the
emotional gap between facial expressions and eye behaviors
for robust ER. As illustrated in Fig.6, EMERT first employs
a Multimodal Feature Extraction (MFE) module to extract
unimodal features. Then, the MAFD applies a gradient rever-
sal layer (GRL) with adversarial loss to decouple emotion-
generic features, which are invariant to the emotion gap
across various modalities, from emotion-unique features,
which preserve their emotion discrepancies across modalities.
Finally, the EMT further uses the emotion-generic features as
query to guide the fusion of emotion-unique features, enabling
robust, emotion-sensitive representation learning for enhanced
ER performance.

MFE: Given multimodal data as input, we employ a pre-
trained Resnet [40] to extract the expression features H, €
RTv%S and use an LSTM [41] to extract the eye movement
features H, € R7=*9 and eye fixation features H, € RTs*5
respectively. T, T, and Ty are the lengths of these three
feature sequences, and .S is the dimension of feature vector.

MAFD: With the multimodal features, we employ the
MAFD module to separate the emotion-generic features Fc,
invariant to the emotion gap across modalities, from the
emotion-unique features F'p retaining modality-specific emo-
tional cues. To achieve this, we first apply an emotion-
generic feature extractor (i.e., M LP.) and three emotion-
unique feature extractors (i.e., M LP,, MLP,, MLPF,), each
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implemented as a two-layer MLP. To ensure modality emotion
invariance in Fo, we introduce a gradient reversal layer (GRL)
after the M LP,, and attach a modality classifier D that
distinguishes feature origins.

By adversarially training D and M LP., we encourage
the F to be indistinguishable across modalities, while Fp
retains discriminative modality-specific cues. The process can
be formulated as,

Ny
1
1 adv = —— 1 "1 F F F;e B
R o = g ol s o (e Frs)
(1)

where Ny is the number of training samples, f;/e; represents
the FER or ER labels, and 05,1, p, and 6 are the parameters of
the M LP, and D, respectively. This adversarial setup ensures
effective decoupling of emotion-generic and emotion-unique
features, helping bridge the modality-induced emotion gap in
ER.

EMT: Existing multimodal Transformer methods often uses
queries from a single modality, which can overemphasize
modality-specific cues and amplify the emotion gap between
facial expressions and eye behaviors, leading to suboptimal
fusion. To address this, EMT first adopts the decoupled
emotion-generic features F- as query ¢, and the emotion-
unique features Fp as key k and value v, yielding more
modality-complementary affective features. We follow the
typical formulation of the Transformer structure as Trans(-)
as:

Xfu=Trans (¢ = Fo,k/v=Fp). (2)

With the modality-complementary affective features X¢,,, we
apply two multi-task prediction heads, namely the FER head
and ER head, to predict the FER result f; and the ER result
€;, respectively. Each prediction head possesses a similar
structure, comprising a 2-layer MLP. Formally, the objectives
for the two prediction heads are written as:

I CE(€;,¢€5), for classification 3)
¢ | Huber(é;,ej), for regression

I, C’E(fj,fj), for classification @
F= Huber(f;, ), for regression

For discrete emotion classification, we introduce the multi-
class cross-entropy loss C'E(); for continuous emotion regres-
sion, we employ the huber loss Huber().

Overall Objective: The total objective function L of
EMERT is the the summation of the above-mentioned three
learning objectives, which can be writen as: £L = algyq, +
B(Le + Ly). Empirically, « = 0.3 and § = 0.1 are hyper-
parameters to balance the multi-task learning process.

V. EXPERIMENTS
A. Experimental Setup

1) Evaluation Protocols: To evaluate methods on the
EMER dataset, we conducted both classification and regres-
sion protocols for both ER and FER tasks. For the classifica-
tion tasks, consistent with the previous research, we chose
three widely-used classification validation metrics, namely

unweighted average recall (UAR), weighted average recall
(WAR), and F-score (F1), to estimate our model. Larger values
are preferred for all of these indicators. For the regression
tasks, we also chose three widely-used regression validation
metrics, like in other papers, namely Mean Absolute Error
(MAE), Mean Squared Error (MSE), and Root Mean Squared
Error (RMSE). All of these regression metrics are as small as
possible.

In addition, following existing evaluation protocols [11],
we employed a 5-fold cross-validation approach for these
benchmarks on EMER. We utilized 1,043 data from the EMER
dataset for training, and the remaining 260 data for testing.

2) Implementation Details: In this paper, we used the
PyTorch framework to implement all models on our EMER
dataset. We set the batch size of all models to 16. All models
were trained on an NVIDIA GeForce RTX 3090 with an initial
learning rate as 0.0001. Cosine decay was used to decrease
the learning rate during training. In the training and testing
phases, each multimodal data in EMER is initially sampled
with 8 frames evenly extracted from the facial expression
video, 32 frames from the eye movement sequence, and 32
frames from the emotion-related eye fixation map. These
frames are then input into the proposed EMERT model as well
as other benchmark models to acquire emotion representations
for predicting the final results.

B. Benchmarking ER & FER on EMER Dataset

We conducted extensive benchmarks for ER and FER,
respectively, on the EMER dataset. For ER, we evaluate clas-
sification (3-class and 7-class) and valence/arousal regression.
For FER, we further include intensity regression in addition
to classification (3-class and 7-class) and valence/arousal
regression. In each task, we compared our EMERT with
various cutting-edge methods including TMC [42], TAILOR
[43], MulT [34], LMF [44], ResNet_LSTM [40], Self MM
[46], MMA-DFER [2], and so on. The results show that
EMERT consistently outperforms these methods across all
evaluation settings, demonstrating its effectiveness in handling
eye behaviors information and mitigating the emotion gap.

1) 3-class ER Classification: Following [18], we bench-
marked EMERT against state-of-the-art methods on 3-class
ER, as shown in Table II. EMERT achieved the highest
accuracy of 59.28% WAR, 52.62% UAR, and 55.71% F1
on ER, improving over Self_ MM [46] by 5.2%, 9.73%, and
8.23%, respectively.

2) 7-class ER Classification: In this setting, we compared
our EMERT method with other typical and popular methods
for 7-class ER. Table II reports the comparison results of
these benchmarks on EMER. EMERT achieved the highest
accuracy of 59.28% WAR, 52.62% UAR, and 55.71% F1
on ER, improving over Self MM [46] by 5.2%, 9.73%,
and 8.23%, respectively. It indicates that EMERT can obtain
more modality-complementary affective features for robust ER
performance.

3) ER Valence/Arousal Regression: Table III reports the
regression results on valence/arousal for ER. Unlike classifi-
cation, regression tasks favor lower metric values. Regarding
the performance on valence and arousal MSE and MAE, we
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TABLE II
COMPARISON RESULTS OF 3-CLASS/7-CLASS ER AND FER ON EMER, RESPECTIVELY.
3-class 7-class
Models ER FER ER FER

WAR (T) UAR() FI (1) [ WAR(M) UAR() FI(T) | WAR(T) UAR(T) FI (1) | WAR(T) UAR() FI (D)

TMC [42] 54.8 37.52 45.87 54.56 39.84 46.96 31.28 27.20 25.20 49.64 31.11 42.66

TAILOR [43] 52.98 34.70 47.58 63.91 43.61 53.12 33.39 24.85 28.40 48.9 30.55 37.12

MulT [34] 57.33 48.03 53.53 64.94 52.18 61.48 31.96 27.45 28.40 48.83 32.82 42.78

LMF [44] 58.78 49.36 54.80 66.90 56.55 63.64 33.07 27.12 27.81 49.34 32.05 42.53

ResNet_LSTM [41] 57.78 49.06 55.08 67.24 56.50 63.52 31.18 27.64 27.48 47.83 32.79 41.38

ResNet_Transformer [40] 56.75 49.63 55.70 61.01 46.56 56.23 29.21 23.49 25.98 47.33 31.10 40.43

C3D_Transformer [45] 52.51 42.44 53.12 59.67 45.88 55.01 31.66 20.49 26.85 42.50 21.54 29.33

Self_MM [46] 54.08 42.89 47.48 61.51 4234 50.69 3247 27.55 28.19 49.58 32.05 42.77

MMIM [47] 55.94 46.93 53.13 68.05 55.99 63.57 31.71 27.81 28.43 48.61 31.77 42.50

TMT [48] 58.72 50.75 55.02 67.14 55.93 63.69 33.65 27.68 30.26 50.28 32.21 42.35

MMA-DFER [2] 52.92 33.33 37.35 59.43 33.31 44.55 30.65 27.73 30.42 48.54 32.81 42.68

NORM-TR [49] 59.13 49.28 53.04 66.92 56.36 62.68 33.72 28.09 28.81 50.80 32.63 43.32

EMERT 59.28 52.62 55.71 68.10 56.91 63.73 33.92 28.17 30.38 51.18 33.04 43.33

TABLE IIT
COMPARISON RESULTS OF VALENCE AND AROUSAL REGRESSION FOR ER AND FER, RESPECTIVELY.
ER FER
Models Arousal } Valence Arousal } Valence
MAE () MSE() RMSE({) , MAE(]) MSE () RMSE () | MAE(l) MSE (J) RMSE (1) , MAE (J) MSE () RMSE ()

TMC [42] 0.369 0.264 0468 1 0438 0.304 0.540 0.226 0.079 0276 1+ 0375 0.218 0.460
TAILOR [43] 0.373 0.223 0465 ' 0514 0.390 0.619 0.246 0.089 0294 ' 0291 0.231 0.474
MulT [34] 0.399 0.263 0.503 : 0.481 0.344 0.573 0.236 0.085 0.287 : 0.338 0.180 0.417
LMF [44] 0.368 0.219 0.457 . 0440 0.283 0.526 0.228 0.080 0.278 . 0.286 0.128 0.359
ResNet_LSTM [41] 0.383 0.241 0482 | 0454 0.303 0.543 0.229 0.082 0.281 0303 0.138 0.366
ResNet_Transformer [40] 0.388 0.241 0.481 I 0450 0.293 0.537 0.234 0.086 0.288 10299 0.136 0.362
C3D_Transformer [45] 0.376 0.224 0.465 0497 0.333 0.571 0.239 0.087 0.288 0342 0.179 0.416
Self_MM [46] 0.374 0.228 0470 ' 0444 0.302 0.542 0.244 0.092 0.297 ' 0.351 0.189 0.426
MMIM [47] 0.379 0.230 0.471 : 0.443 0.295 0.535 0.228 0.084 0.285 : 0.290 0.131 0.356
TMT [48] 0.376 0.227 0465 | 0456 0.313 0.551 0.231 0.084 0.284 | 0301 0.141 0.371
MMA-DFER [2] 0.366 0.235 0.493 I 0.440 0.291 0.529 0.226 0.084 0.273 10292 0.128 0.364
NORM-TR [49] 0.367 0.221 0.461 0437 0.283 0.521 0.224 0.079 0.278 I 0.289 0.129 0.360
EMERT 0.365 0.217 0456 ' 0.433 0.279 0.519 0.223 0.078 0.266 ' 0.286 0.127 0.351

observed that our EMERT obtained more precise regression
results with smaller errors. Moreover, EMERT achieves 0.9%
and 1.1% lower MAE, and 1.1% and 2.3% lower MSE than
Self_MM [46], showing its fine-grained emotion perception.

4) 3-class FER Classification: We compared EMERT with
state-of-the-art methods for 3-class FER on EMER dataset, and
the results are shown in the Table II. EMERT achieved the
significant gains over Self MM [46]: 6.59% WAR, 14.57%
UAR, and 13.04% F1, demonstrating the effectiveness of
integrating eye behavior cues for FER.

5) 7-class FER Classification: The performance results of
the cutting-edge methods and our proposed EMERT method
for 7-class FER are shown in Table II. EMERT achieves the
highest WAR (51.18%), UAR (33.04%), and F1 (43.33%),
indicating a stronger ability to capture facial expressive be-
haviors from multi-source signals.

6) FER Valence/Arousal Regression: Table III provides
the results of our EMERT and other cutting-edge methods
for FER valence/arousal regression on EMER. Compared
with TMT [48], EMERT achieves up to 0.8% and 1.5%
improvement on MAE, 0.6% and 1.4% on MSE, and 1.8% and
2.0% on RMSE, confirming its robustness under continuous
affective dimensions.

7) FER Intensity Regression: To the best of our knowl-
edge, we are the first to propose benchmarks for FER intensity
regression. Table IV shows that EMERT outperforms all
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Transformer-based methods, achieved the gains over MMA-
DFER [2]: 2.6% MAE, 2.2% MSE, and 0.2% RMSE, demon-
strating the effectiveness of integrating eye behavior cues for
FER.

TABLE IV
COMPARISON OF FACIAL EXPRESSION INTENSITY REGRESSION FOR FER.
Models Metric
MAE (}]) MSE (]) RMSE ()

ResNet_Transformer [45] 0.701 0.707 0.829

MulT [34] 0.804 1.035 0.999

TMT [48] 0.668 0.690 0.818

MMA-DFER [2] 0.686 0.695 0.811

NORM-TR [49] 0.666 0.685 0.823

EMERT 0.660 0.673 0.809

C. Deepen Understanding of the EMER Dataset

1) Analysis of ER labels and FER labels: To illustrate
the gap between ER and FER, Fig.7 displays the distribution
discrepancy between ER labels and FER labels in our EMER
dataset. As shown, the "Neutral” category is significantly more
dominant in FER labels, while high-intensity emotions such
as ’Surprise” are notably underrepresented. This suggests that
FER tends to capture surface-level facial cues, whereas ER
reflects individuals’ subjective emotional experiences. Such
differences indicate a clear discrepancy in emotional percep-
tion between the two tasks.

2) Analysis of Benefits from Eye Behaviors for ER/FER:
To explore the effect of eye behaviors in EMER for both ER
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and FER tasks, we used our proposed EMERT to perform
separate emotion and faical expression classification with
different modality settings on EMER, as shown in Table V.
The results show that using all modalities, including eye
movement sequences, eye fixation maps and facial expression
videos, yielded the most superior performance, underscoring
that eye behaviors effectively enhance both ER and FER
performance. In addition, we observed that adding the eye
movement sequences led to the highest improvement (see the
underline results in the table), verifying that the eye behaviors
are the effective complement of facial expressions for robust
ER. We also investigate the correlations between eye behaviors
and facial expressions for ER and FER tasks by using three
distinct correlation coefficients: Pearson Coefficient, Spearman
Coefficient, and Kendall Coefficient [50].

TABLE V
ABLATION STUDY ON 7-CLASS ER AND FER TASKS. F, E, G DENOTE
FACIAL EXPRESSIONS, EYE MOVEMENTS, AND FIXATION MAPS,

RESPECTIVELY.

Modality ER task FER task
F E G WAR(() UAR(() FI () WAR() UAR() FL (M
30.21 26.40 29.32 46.95 27.21 34.98
v 31.51 26.12 27.61 40.80 18.99 24.92
v 28.20 27.20 24.10 41.98 22.74 28.72
v v 32.89 27.03 29.89 49.35 32.25 41.98
v v 32.81 27.63 29.85 47.29 27.75 35.09
v v 31.88 27.64 29.01 43.32 24.71 31.22
v v v 33.92 28.17 30.38 51.18 33.04 43.33

As depicted in Fig.8, the majority of correlation coefficients
associated with the ER task exhibit higher values than the
FER task. This observation indicates that eye movement data
serves as a valuable complement to ER. Meanwhile, the
correlation coefficients pertaining to facial expressions also
demonstrate that eye movement data effectively contributes to
the understanding of FER. By combining the information, we
can achieve a more comprehensive analysis of both emotions
and facial expressions. This complementarity not only deepens
our understanding of the ‘emotion gap’ but also holds promise
for enhancing the performance of emotion analysis systems in
various domains.

3) Effects of Different Annotation Methods: To assess
the efficacy of our ALA annotation methods for FER, we
employed Cronbach’s Alpha [19] to evaluate the consistency
of different annotation approaches, as presented in Table VI.
The results reveal that model auto-annotation exhibits the
lowest reliability, primarily due to dataset bias. The manual
expert annotation, commonly used in many current datasets
[19], is susceptible to subjective individual differences, such as
identity and profession, resulting in an average low Cronbach’s
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Alpha of 0.799. The combination of model auto-annotation

and expert annotation can enhance the quality and consistency

of emotion labels (as seen in the third row of Table VI). Ul-

timately, our ALA approach achieves the most consistent and

reliable FER labels, significantly surpassing other methods,

owing to the incorporation of annotation reliability assessment.
TABLE VI

ANNOTATION CONSISTENCY EVALUATION ON DIFFERENT ANNOTATION
APPROACHES. THE BEST RESULTS ARE IN BOLD.

Methods Label Type Cronbach’s Alpha
Discrete emotion category 0.731
Model auto-annotation Valence rating 0.789
Arousal rating 0.679
Discrete emotion category 0.784
Expert annotation Valence rating 0.829
Arousal rating 0.786
: Discrete emotion categor 0.852
Expert annotation ,+ Valence rating o 0.863
Model auto-annotation Arousal rating 0.847
Discrete emotion category 0.978
Proposed ALA Valence rating 0.927
Arousal rating 0.982

4) Effects of Different Eye Movement features: To fur-
ther investigate the contribution of different Eye Movement
information, we conducted an ablation study on EMER by
progressively isolating individual features. Specifically, we
evaluated models using only gaze point, gaze time, and pupil
diameter, and compared them with our complete eye move-
ment modeling design. As shown in Table VII, the results
reveal that different features contribute unequally to ER and
FER. For ER, gaze point and pupil diameter provide more
emotion-related information, while gaze time yields relatively
weaker performance. For FER, pupil diameter achieves the
most significant improvements, followed by gaze time, with
gaze point being the weakest. Importantly, when integrating
all three types of features, our complete design consistently
outperforms single-feature settings on both ER and FER tasks.
These findings demonstrate that eye movement information
not only carries meaningful affective cues but also provides
complementary signals when different features are combined.
This validates the necessity of modeling multiple eye move-
ment features jointly, rather than relying on a single aspect, to
enhance the robustness and accuracy of multimodal emotion
recognition.

D. Deepen Understanding of the EMERT Method

We conduct extensive ablation studies to further validate our
method, with feature distribution visualizations across tasks
provided in the supplementary material (Sec.Ill).
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Fig. 8. The correlation analysis of eye behavior data for each category in ER and FER by three different correlation coefficients, i.e., (a) Pearson’s coefficient,
(b) Spearman’s coefficient, and (c) Kendall’s coefficient. The orange line illustrates the correlation of eye movement data for 7-class FER annotations, while
the blue line signifies the correlation of eye movement data for 7-class ER annotations. In both cases, the closer the value is to 1, the stronger the correlation.
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TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT EYE MOVEMENT FEATURES
ON THE 7-CLASS ER AND FER TASKS. THE BEST RESULTS ARE IN BOLD.

Type ER FER
WAR (1) UAR () FL (1) | WAR () UAR () FI (1)
Gaze point 31.96 27.17 28.47 46.18 30.64 36.53
Gaze time 31.13 27.05 25.21 47.57 30.48 38.06
Pupil diameter 32.38 26.85 27.42 50.46 31.27 41.34
Ours 33.92 28.17 30.38 51.18 33.04 43.33

1) Analysis of Attention Gap between ER and FER:
In addition to the label differences, we can further carry out
deeper interpretation with our EMER dataset. In particular,
by training an EMERT on our dataset, we can visualize the
attention maps obtained by the FER and ER heads in EMERT,
respectively, as illustrated in Fig.9. According to the figure, it
can be seen that the ER head pays more attention to detailed
areas such as the corners of the eyes, mouth, and nose, while
the FER head pays more attention to the global areas, such as
the entire eyes and mouth.

FER ER FER

El
e

Fig. 9. Attention maps from the ER head and FER head in EMERT. For ER,
the model pays more attention to detailed areas such as the corners of the
eyes, mouth, and nose, while for FER, the model pays more attention to the
global areas, such as the entire eyes and mouth.

2) Analysis of Whether FER and ER Reinforces Each
Other: To investigate the potential benefits of ER and FER to
each other, Table VIII compared their performance in single-
task and multi-task settings on the 3-class ER and FER tasks,
respectively. Specifically, we first conducted the experiments
on the FER task with and without the ER head integrated
into our proposed EMERT model (see Fig. 2), respectively.
Following this, we proceeded to evaluate the ER task with and
without the FER head. Our results revealed that the inclusion
of the FER head in the ER task significantly enhances per-
formance, resulting in a 5.94% increase in the UAR metric.
Additionally, the integration of the ER head also improves
FER results by 0.37% in WAR. These experimental results
highlight the mutually reinforcing effects of ER and FER,
indicating that our proposed EMER and the corresponding
EMERT method help to understand the emotion gap between
emotions and facial expressions, ultimately improving state-
of-the-art performance.

TABLE VIII
INTER-AUGMENTATION OF FER AND ER IN EMERT.
Type Task head Metric

P FER ER | WAR () UAR () FI (D)
Single-task FER M X 67.73 58.31 63.18
Multi-task FER v v 68.10 56.91 63.73
Single-task ER X v 56.01 46.68 50.85
Multi-task ER v v 59.28 52.62 55.71

3) Evaluation on the Another SIMS Dataset: To vali-
date EMERT’s effectiveness, we followed [46] and evaluated

our EMERT on the SIMS dataset using Acc-2/3/5. SIMS
[51] provides video, audio, and text with multimodal and
unimodal annotations. We utilize 1,824 samples for training
and 457 samples for testing. As shown in Table IX, EMERT
outperforms the other Transformer-based method, i.e., MulT
[34], with a relative increase of 1.86% (Acc-2), 3.34% (Acc-
3), and 23.04% (Acc-5), highlighting its effectiveness and
generalization.
TABLE IX

COMPARISON RESULTS OF MULTIMODAL EMOTION RECOGNITION ON
SIMS. THE BEST RESULTS ARE IN BOLD.

Models Acc-2 (1) Acc-3 (1) Ace-5()
MulT [34] 78.84 67.13 38.24
TFN [52] 82.06 66.16 39.74
MEN [53] 78.26 65.79 41.19

Self-MM [46] 78.99 66.52 44.20

EMERT 80.31 69.37 47.05

4) Effects of Different Modules in EMERT: To assess
each module’s impact, we conduct ablation studies on the 7-
class ER and FER tasks using the EMER dataset (Table X).
The baseline method, a Transformer-based multimodal fusion
approach [45], directly combines facial expression features
from the pre-trained ResNet [40] with eye movement and
eye fixation features from the pre-trained LSTM [41]. Firstly,
with the addition of the MAFD module, we observe consistent
improvements compared to the baseline. Specifically, there is a
relative increase of 2.31% in ER and 0.50% in FER for WAR.
This demonstrates that modality-adversarial decoupling effec-
tively reduces non-emotional interference and helps the model
learn clearer modality-invariant emotion representations. Sec-
ondly, the EMT module further enhances performance with a
relative increase of 8.19% in ER and 1.76% in FER for Fl1,
indicating its capability to exploit complementary supervision
from ER and FER labels. By jointly modeling both tasks,
EMT alleviates task-specific bias and strengthens the cross-
task generalization of the learned features. Ultimately, our full
EMERT model, combining MAFD and EMT, achieves the best
performance across all metrics, confirming that these modules
are complementary and together contribute to both ER and
FER tasks.

TABLE X
MODULE ABLATION STUDY ON THE 7-CLASS MER AND FER,
RESPECTIVELY. THE BEST RESULTS ARE IN BOLD.

Module ER FER
Baseline MAFD EMT | WAR (1) UAR () FI () | WAR (f) UAR () FI ()
7 3118 2764 2748 | 4783 3279 4138
v v 31.90 2785 2970 | 4807 3285  42.80
v v 32.93 2800 2973 | 4861 3291 4211
v v v 33.92 28.17 3038 | 5118 33.04 4333

5) Robustness of EMERT against Noisy Data: To evaluate
robustness, we injected Gaussian noise with varying variances
into each modality for the 3-class emotion recognition task.
As shown in Table XI. Notably, existing methods such as
MMIM [47] and Self-MM [46] exhibit a significant per-
formance drop (over 5%) under noise. In contrast, EMERT
shows only a 2.29% decrease in WAR when the variance
is set to 0.01, with a slight increase in F1. These results
demonstrate that EMERT is more resilient to modality-specific
noise compared to prior approaches.

6) Effects of Different hyperparameter in EMERT:
To investigate the sensitivity of EMERT to hyperparameter
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TABLE XI
ROBUSTNESS COMPARISON OF DIFFERENT METHODS FOR 3-CLASS ER ON
EMER. THE BEST RESULTS ARE IN BOLD.
Variance (Gaussian) setting

Methods 0.01(WAR/F1) 0.05(WAR/F1) 0.1(WAR/F1)
MMIM [47] 46.23/45.02 45.13/40.05 42.82/36.01
Self-MM [46] 42.98/42.24 42.27/42.16 37.20/40.45
EMERT 56.99/57.01 55.42/57.30 56.33/56.23

settings, we conduct experiments on the 7-class ER and FER
tasks with varying values of the adversarial loss weights o and
8. As shown in Table XII, the performance exhibits notable
variation under different configurations. When o = 0.3 and
3 = 0.1, EMERT achieves the best results, with WAR/UAR/F1
reaching 33.92/28.17/30.38 for ER and 51.18/33.04/43.33 for
FER, respectively. This suggests that a moderate adversarial
loss weight provides an effective balance: it is strong enough
to guide modality-adversarial decoupling, but not so dominant
as to destabilize training. In contrast, excessively small weights
(e.g., « = 0.1 or § = 0.01) reduce the effectiveness of
the decoupling mechanism, while overly large weights (e.g.,
a = 0.5 or § = 1) can overwhelm the supervised learning
objective, leading to degraded performance. These findings
confirm that EMERT is relatively robust to hyperparameter
variations within a reasonable range, and that carefully tuning
«a and S further enhances the balance between adversarial
feature decoupling and multi-task learning, thereby improving
overall performance.
TABLE XII

HYPERPARAMETRIC ANALYSIS EXPERIMENT ON THE 7-CLASS ER AND
FER, RESPECTIVELY. THE BEST RESULTS ARE IN BOLD.

o 3 ER FER
WAR (1) UAR (1) FI (1) | WAR (1) UAR (1) FI (D)
0.01 30.19 26.31 26.51 45.31 29.83 38.13
0.1 0.1 31.69 27.44 27.28 46.64 32.26 40.43
1 31.2 26.57 26.36 48.28 32.13 40.47
0.01 28.67 24.39 21.57 44.66 26.38 34.31
0.3 0.1 33.92 28.17 30.38 51.18 33.04 43.33
1 33.09 27.36 29.73 51.15 32.8 40.71
0.01 25.14 19.59 16.68 41.79 19.58 26.75
0.5 0.1 26.19 20.63 18.56 43.71 23.57 30.42
1 29.55 23.77 21.79 47.84 28.93 36.93

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explored the gap between Facial Ex-
pression Recognition (FER) and Emotion Recognition (ER)
by introducing eye behaviors as a crucial emotional cue. To
support this, we constructed the Eye-behavior-aided Multi-
modal Emotion Recognition (EMER) dataset, which contains
1,303 spontaneous emotional samples from 121 participants.
Notably, EMER provides multi-view emotion labels for both
ER and FER, enabling a comprehensive analysis to elucidate
the gap between them. Building upon EMER, we propose
the Eye-behavior-aided MER Transformer (EMERT), a sim-
ple yet effective model that integrates modality-adversarial
feature decoupling and multitask learning to effectively fuse
eye behaviors and facial expressions. Extensive experiments
across seven benchmark protocols demonstrate that EMERT
significantly outperforms state-of-the-art multimodal methods,
highlighting the importance of modeling eye behaviors for
robust and complementary emotion understanding. This paper

provides a complete framework—from dataset to model—for
advancing multimodal emotion recognition. Our findings offer
insights into the gap between FER and ER, and emphasize the
value of eye behaviors in enhancing emotional perception. In
the future, we plan to extend EMER with more diverse and
ecologically valid scenarios and release it to encourage further
research in emotion-related tasks. Moreover, the proposed
EMERT framework shows strong potential for real-world ap-
plications such as human—computer interaction, mental health
monitoring, and emotionally intelligent virtual agents. We also
aim to integrate large multimodal models to further investigate
the relationship between FER and ER. These directions will
not only enrich the academic value of this work but also
enhance its practical impact.
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